17-x^2/4=43-x^2

Simple and best practice solution for 17-x^2/4=43-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17-x^2/4=43-x^2 equation:



17-x^2/4=43-x^2
We move all terms to the left:
17-x^2/4-(43-x^2)=0
We get rid of parentheses
-x^2/4+x^2-43+17=0
We multiply all the terms by the denominator
-x^2+x^2*4-43*4+17*4=0
We add all the numbers together, and all the variables
-1x^2+x^2*4-104=0
Wy multiply elements
-1x^2+4x^2-104=0
We add all the numbers together, and all the variables
3x^2-104=0
a = 3; b = 0; c = -104;
Δ = b2-4ac
Δ = 02-4·3·(-104)
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{78}}{2*3}=\frac{0-4\sqrt{78}}{6} =-\frac{4\sqrt{78}}{6} =-\frac{2\sqrt{78}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{78}}{2*3}=\frac{0+4\sqrt{78}}{6} =\frac{4\sqrt{78}}{6} =\frac{2\sqrt{78}}{3} $

See similar equations:

| (9x+9)/(x^2-6x-7)=0 | | -21+7r=-7(8r+3)+2r | | 16=a | | 4m+1=15 | | 4y-70=22 | | 2(w-5)^2=18 | | 4y-15=-6(y+2) | | 5(x-2)+10=10X | | 3/4x+1=1/4+1/4x | | 30–y–4y=40 | | 2x+8+4x=-4 | | 7x-1=29 | | 120/(12×x-12)=6 | | -2(6x-9)=-12x+18 | | -8n+31=-2(7n-4)-7 | | 9–3v=3 | | 2(5c-7=1 | | 4v-v/12=12 | | -12y+16=6+3y | | 125=15x(x-75)+50 | | -9x+3=-7x+3 | | -12y+16=16+3y | | 4(3x-9)=-36 | | 6x-8+7x=57 | | -15x+3x+4=52 | | (4x+2)=4x−12(x−1) | | 1/10y+5=-7 | | (x-1)^3+x-1=0 | | 4x+22=3+8x-5 | | 120÷(2×x-12)=6 | | (t-(1/2))^2=(-17/4) | | 11x-6x+3=38 |

Equations solver categories